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ABSTRACT: A feasibility study on using Raman spectral imaging for visualization and analysis of filler distribution in chalk filled poly-

propylene samples has been carried out. The spectral images were acquired using a Raman spectrometer with 785 nm light source.

Eight injection-molded samples with concentration of chalk 25% and 50% were used in the experiment. Two methods for spectral

unmixing were applied to the images and both revealed almost identical distribution maps over the samples’ surface. The maps also

correlated with the ones obtained for several separated peaks, typical for the chalk and the polypropylene. The revealed distribution

patterns show the same trend for each concentration level and agree with theoretical explanation of plastic flow into an injection

molding tool. VC 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43016.
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INTRODUCTION

Polymer materials have become very important in everyday-life

due to their advantageous features compared to conventional

materials. Low weight, insulation characteristics, toughness,

durability, flame-retardation, and resistance to corrosion can be

mentioned among the advantageous properties of polymeric

materials.1

More than 33% of polymers in plastic industry are produced by

injection molding, owing to the feasibility of making complex

shapes with high precision, great reproducibility within short

periods of time, and cost-effectiveness.2 Because of the rapid

changes in various processing parameters, the material is sub-

jected to different effects. The most significant impacts acting

on the material are due to the high-pressure variations and the

rapid cooling.2 These effects, which determine the final prod-

ucts’ quality, include3 polymer properties, product design and

characteristics, mold design and configuration, process condi-

tions, as well as injection molding machine and its process

control.

Polymer properties include not only the quality of the applied

polymeric material, but also the incorporated additives and/or

fillers. Use of fillers may have different reasons, but in most of

the cases, the main aim is to change physical properties of the

raw material. Fillers can also be used for dilution or extension

of a polymeric matrix.4

The shear forces acting on the material during manufacturing

influence the dispersion and distribution of filler particles. In

heterogeneously distributed systems, the properties are not

even. Local stress maximums evolve around heterogeneous ini-

tiating local deformation processes, which might induce prema-

ture failure or deteriorated mechanical properties of the

product. Furthermore, insufficient distribution can result in

poor aesthetics. Therefore, the characterization of filler distribu-

tion can be a step towards quality assessment and process

optimization.

There are many ways that can be employed to assess the spatial

distribution of fillers. However, if a rapid and non-destructive

method is needed, the use of vibrational spectroscopy can be

particularly beneficial. Vibrational spectroscopic methods, espe-

cially near infrared (NIR) and Raman, are used widely for esti-

mation and monitoring of product quality in many areas, first

of all in food industry and pharmacy.

There are papers reported on use of the spectroscopic methods

on assessing properties of polymer materials and detection of

various fillers in polymers, e.g., identification and quantification

of calcium carbonate (CaCO3) in compression molded high

density polyethylene (HDPE) samples by fourier transformed

(FT)-Raman spectroscopy,5 or characterization of graphene-

dispersion in epoxy resins.6 Most of the studies focused on the

dispersion of particles in order to detect higher order structures,

which might act as weak sites in the product. Sul et al.7 used
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statistical methods to calculate a dispersity index, which gave

information about the dispersion and distribution of carbon

nanotubes in epoxy resin, based on pictures obtained by Scan-

ning Electron Microscopy (SEM).

Hyperspectral imaging (HIS) is a development of spectroscopic

methods allowing to get information about spatial distribution

of chemical components. Coupled with methods for multivari-

ate data analysis (chemometrics) it can be very powerful for

revealing hidden structures and patterns.8 The utilization of

Raman hyperspectral imaging is one of the most emerging tech-

niques, for example in the pharmaceutical field.

Use of chemometric methods, such as principal component

analysis (PCA) and multivariate curve resolution (MCR), is

quite efficient for detection of components and the characteriza-

tion of their distribution by hyperspectral images.8–10 The com-

bination of such methods is less ubiquitous for polymeric

materials, however, the exploitation of the offered advantages

has also gained attention in this field. Thus, it was feasible to

identify chemically similar polymers, such as polyethylene (PE)

and polypropylene (PP),11 and separate them from other, com-

monly existing plastic materials in post-consumer waste, such

as polyethylene-terephthalate (PET) and poly-vinyl chloride

(PVC) by NIR spectral imaging and principal component analy-

sis (PCA).12 To our knowledge, there are no reports on using

spectral imaging for characterization of chalk distribution in PP.

In the present work, Raman spectral imaging has been applied

for obtaining distribution patterns of CaCO3 in injection

molded PP samples. Visual inspection of spectral images at cer-

tain peaks allowed to obtain some interesting patterns. Applying

two methods for spectral unmixing made it possible to resolve

spectra of PP and the filler and get reliable distribution maps.

The article describes a general methodology used to work with

spectral imaging for revealing filler distributions as well as main

results obtained by using this methodology in our study.

RAMAN SPECTROSCOPY AND SPECTRAL IMAGING

Vibrational spectroscopy is a rapid, non-destructive, and reliable

tool for characterization of molecular structure. Infrared (IR) and

Raman spectroscopy are the most commonly applied tools for the

investigation of the vibrational spectra. Raman spectroscopy uses

inelastic scattering of light, which is also referred to as the Raman

effect, for getting chemical information for a sample. The incident

monochromatic radiation in Raman spectroscopy is in the visible

or NIR region, possessing high energy, resulting in greater penetra-

tion in comparison with e.g. IR spectroscopy. At the same time,

the collected signal is in the mid-infrared spectroscopy (MIR)

region, stemming from fundamental vibrations, therefore providing

the fingerprint of the molecules.

The collection of spectra can be executed automatically or man-

ually by using the Raman equipment and proper software. The

collected Raman spectra of solid surfaces can be organized to

form spectral images or hypercubes, allowing further analyses of

the sample. Spectral image is a collection of spectra at pre-

determined X-Y positions, followed by repeated measurements

with defined distances until the selected area of the sample is

investigated.13 Figure 1 illustrates the structure of a spectral image,

which is formed by the collected spectra in X and Y spatial direc-

tions with wavenumbers in the Z direction. By having the whole

spectrum of wavenumbers in the Z direction, it is possible to

choose one or multiple peaks, and create pseudo-color images that

represent the intensity of the chosen peaks in the X-Y plane.

The visual analysis of spectral images highly depends on the

amount of prior information available regarding the chemical

components.10 If individual spectra of the components are

known, the investigation can be carried out based on the char-

acteristic peaks’ intensity-distribution throughout the sample.

The whole spectrum can also be introduced by classical least

squares (CLS) method. However, application of chemometric

methods allows to obtain more thorough and reliable results

taking into account whole information from the spectra instead

of limiting it by considering only individual peaks.

METHODS FOR PREPROCESSING, EXPLORING,
AND ANALYSIS OF SPECTRAL DATA

Preprocessing of Raman Spectra

Certain side effects might deteriorate the quality of the spectra,

and they should be eliminated prior to any further analysis. The

intensity of the Raman scattering is usually weak, therefore par-

asite signals might significantly influence the results. The unde-

sirable peaks can originate from charge-coupled device (CCD)

background noise, cosmic noise, or fluorescence background.14

They can be eliminated by applying suitable pre-processing

techniques. The removal of cosmic spikes is normally carried

out by the measurement software, thus the main focus during

preprocessing is on the compensation of the varying back-

ground due to, among other factors, fluorescence. In the present

case the baseline estimation was carried out by asymmetric least

squares (ALS) fitting, which relies on curve fitting by asymmet-

ric weights.15 The method is shortly described below.

The spectra can be divided into regions, which contain analyti-

cally significant peaks, and regions without peaks. Baseline esti-

mation with ALS takes into account these regions with different

weights, and corrects the expected baseline accordingly. It is

based on the minimizing of the following function:

Q5
X

i

vi yi–fið Þ21k D2fi

� �2
(1)

where y represents the data (spectrum), f is a smooth trend (i.e.

the expected baseline), v is prior weights, and k is roughness

penalty. If y> f, i.e. there is a peak above the expected baseline,

v 5 p. On the contrary, if the data is below or on the expected

baseline, v 5 1 – p with 0< p< 1, therefore, positive and nega-

tive deviations from the trend get different weights. The param-

eter k determines the contribution of the second term. The

greater k is, the smoother f gets.15

Another important preprocessing step is a normalization of the

spectra. Normalization allows to get rid of physical effects (such

as e.g. different focal distance due to an uneven surface of a

sample) in the spectra without changing relationships among

the spectral peaks. There are several ways to normalize the spec-

tra: unit area, unit length, or standard normal variate (SNV)

normalization. In the present work, a unit length normalization
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was utilized, so every spectrum was represented as a unit vector

in spectral (wavenumber) multidimensional space.

Multivariate Curve Resolution

In order to obtain more accurate information about the sub-

stances of the sample, i.e. their spectra and relative concentra-

tion profiles, spectral unmixing can be applied, which is

referred to as Multivariate Curve Resolution (MCR) in chemo-

metrics. This approach is based on the fact that each pixel of

the hyperspectral image is a linear combination of several spec-

tral signatures of different materials (namely individual spectra

of components). By spectral unmixing, it is possible to decom-

pose the pixels’ spectra into a collection of constituent spectra

and the corresponding proportion of each material even if the

mixture is unknown.16 Two methods for spectral unmixing have

been applied in this work—SIMPLISMA (SIMPLe-to-use Inter-

active Self-modeling Mixture Analysis) and Multivariate Curve

Resolution with Alternating Least Squares (MCR-ALS).

The SIMPLISMA is a simple and fast self-modelling method for

spectral unmixing, which does not require reference spectra or

any other prior information. The SIMPLSIMA algorithm has

been invented by Willem Windig17 and was improved later by

the author and his colleagues.17 The algorithm is iterative and

based on a so-called purity approach. It assumes that the ana-

lyzed spectra have wavenumbers, which mostly experienced con-

tribution of only one of the chemical components, so the

variation of spectral intensity at this wavenumber is directly

connected to the concentration of a particular component.

These wavenumbers are called pure variables. If at least one

pure variable is found for each component, then the pure spec-

tra for the components can be found by a linear regression.

The pure variables are identified by a purity function, which is a

ratio of standard deviation of pixel intensity to the mean inten-

sity calculated separately for each wavenumber. In order to

tackle problem with zero mean a small constant value is added

to the denominator. The values can be plotted as a function of

wavenumbers and is called purity spectrum.

The algorithm works as following. First, a purity function is cal-

culated for the original spectral data. The maximum for the

purity function points out the pure variable of the strongest

component. The pure spectrum of the component is evaluated

and its influence is eliminated from the data. Then the steps are

repeated to find the next component.

Figure 1. Spectral image (a hypercube). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

ARTICLE WILEYONLINELIBRARY.COM/APP

WWW.MATERIALSVIEWS.COM J. APPL. POLYM. SCI. 2016, DOI: 10.1002/APP.4301643016 (3 of 10)

http://wileyonlinelibrary.com
http://onlinelibrary.wiley.com/
http://www.materialsviews.com/


The original algorithm has an important drawback, since for

complicated mixtures it is rather difficult to find a waveband,

where influence of mixture components is not overlapped. This

problem can be tackled by using a modified algorithm, where a

second derivative is used instead of original signal, since the

derivative may significantly improve resolution of overlapped

peaks, keeping the linearity at the same time.

MCR-ALS is another widely used soft-modeling technique for

the decomposition of two-way data sets.18 In the present study,

it was applied for spectroscopic data, organized into the data

matrix D. The decomposition of this matrix is carried out

according to eq. 219:

D5CST 1E (2)

where C represents the concentration of the species involved, S

describes the spectra of pure components, while E stands for

the residual matrix. The decomposition of the data matrix into

matrices containing the spectra and the corresponding concen-

trations is feasible due to the assumption that the collected sig-

nals follow a bilinear additive model (Lambert-Beer Law).19

Many sets of C and ST are able to describe the original data

matrix; therefore, different constraints have to be applied during

the ALS optimization to avoid ambiguities. One of the most

commonly used constraints is non-negativity19—either spectra

or concentrations or both may not have negative values. The

implementation of other constraints can considerably help the

analysis, such as the introduction of chemical information as an

equality constraint if the pure components’ spectra are avail-

able.20 Further possibilities for constraints include unimodality,

closure, trilinearity, selectivity, and/or other shape- and hard-

modeling constraints.21

Equation (2) is solved iteratively by an ALS method for pro-

posed number of components, by using initial estimation of

either C or ST.21 Convergence is achieved, if the difference in

standard deviations between the calculated and experimental

data values is less than a certain value in two following iteration

steps.21

All calculations, modelling, and plotting in the present work

have been carried out using MATLAB
VR

R2015a (The Math-

Works, Natick, Massachusetts), for MCR-ALS a toolbox written

by chemometric group from University of Barcelona was used.21

EXPERIMENT AND RESULTS

Materials

Chalk-filled PP samples with different filler concentrations

(25% and 50% chalk by mass concentration) were investigated

during the experiments. Two samples of each concentration

were chosen for analysis with manual mapping.

The 50% chalk content was provided by a supplier, while 25%

chalk content was obtained by diluting this material with pure

PP by means of a twin-screw extruder (LabTech Engineering),

cooled with water, and grinded by a pelletizer machine into

3 mm pellets. The production of samples was performed by

injection molding (ENGEL victory 60). The mold produced a

thin sample of rectangular shape. The samples’ size was approxi-

mately 35 mm 3 30 mm with thickness of about 1 mm.

Experiment

The experiments were carried out using analyzing unit Ram-

anRXN1 with 785 nm laser source from Kaiser Optical Systems.

The wavenumber range of the collected spectra was from 100 to

3500 cm21 with spectral resolution of 1 cm21. The laser power

was set to 400 mW.

The generated laser beam from the laser source was directed

through a fiber optical cable to the non-contact probe, where it

illuminated the sample at approx. 1 cm distance from the

probe. The backscattered radiation was collected by the same

probe and directed through the cable to the notch filter that

removed Rayleigh scattering. The radiation went afterwards to

the monochromator, which separated the light before it reached

the CCD detector.

The collection of spectra from the surface of a sample was per-

formed manually by moving the sample by 0.5 cm in X and Y

directions, which resulted in a spectral image with 7 3 6 pixels

(42 spectra). The spectra acquisition was carried out with expo-

sure time 5 3 s, the laser spot size was around 0.3 cm with

0.5 cm between the centers of the spots.

The obtained spectra showed the intensity as a function of

wavenumber. Prior to further analysis the spectra were cut to

140. . .3200 cm21 to remove noisy tails and pre-processed with

ALS baseline correction. The parameters of the baseline correc-

tion algorithm were found experimentally as the following:

smoothness: 1000 and penalty: 0.002. After that, spectra were

normalized to a unit length by dividing the spectral values to

square root of sum of squared intensities. Figure 2 shows spec-

tra for four samples (two with 25% chalk and two with 50%

chalk) before (left) and after (right) the preprocessing.

Exploratory Analysis of Spectral Images

In Figure 3 spectra of the pure components, CaCO3 and PP are

shown. One can see that CaCO3 has two clear peaks at

280 cm21 and 1086 cm21 while PP has one of the strongest

peak at 809 cm21. All three peaks are very much selective,

meaning that the other component has almost no Raman signal

at the wavebands. Investigation of the preprocessed spectra

acquired for the samples (Figure 2) showed that the samples

with 25% of CaCO3 had chalk peaks, whose size was about two

times smaller in comparison with samples having 50% of

CaCO3. It can be also noted that the variation of the spectra

within each sample is very small, which might be a good illus-

tration of the samples’ homogeneity in the investigated layer.

In order to see the spatial distribution of the Raman intensities

and, therefore, the concentration of components, a set of

pseudo-color images was made for each of the selected peaks as

shown in Figure 4. The first two rows show images correspond-

ing to the chalk peaks (280 cm21 and 1086 cm21), whereas

images in the third row correspond to the PP peak at

809 cm21. Since the average concentration of chalk in the sam-

ples was known, we rescaled the peak height to the concentra-

tion of the chalk in percent by using simple linear regression, so

the color bar legends for these images show the estimated con-

centration. The images for 809 cm21 use original scale, which

corresponds to the peak height. A missing segment on each
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image indicates the gate position on the sample, where a hole

could be found on the product, therefore the data acquisition

performed on that segment was always treated as an outlier.

Generally, it can be seen that the shown patterns are very similar

for the samples with the same filler concentration and there is a

clear difference between the samples with lower (25%) and higher

(50%) concentration. In both cases, spatial variation of the filler

is very small (around 1% of the average concentration). Also, as

expected, concentrations of filler and PP are complementary.

In order to see the spatial distribution of the filler in all samples

better the images for peaks, corresponding to the chalk, were

rescaled according to the average concentration, so for 25%

samples, the scale was approximately from 19% to 21% and for

the 50% samples, the scale was between 48% and 52%. The

intensities for PP peak (809 cm21) were not rescaled, however,

individual limits for the intensity levels for 25% and 50% case

were used in this case. The images are shown in Figure 5. The

deviation of values shown by the scales and the theoretical val-

ues might have been caused by minor errors during the meas-

uring, mixing, and production of samples.

The comparatively small amount of spectra taken for each sam-

ple makes the images look “pixelized” and complicates visual

analysis. On the other hand, taking more spectra requires more

time and more precise (and expensive) equipment for position-

ing of the samples. It was decided to tackle this problem by

using bicubic interpolation as it is shown in Figure 6. Bicubic

Figure 2. Original (left) and preprocessed (right) spectra from four selected samples. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]
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interpolation22 is an extension of interpolation of points with

cubic polynomial to a two-dimensional case where points are

located in a two-dimensional grid. It allows to upsample image

pixels in order to tackle the effect of pixelization on low-

resolution images. The interpolated images reveal the patterns

better and therefore allow to make the visual analysis more

comprehensive.

The interpolated images show that samples with the same con-

centration of the filler clearly share the same trend in their spa-

tial distribution. Also, the variation for 50% samples is smaller,

Figure 3. Spectra of pure chalk and polypropylene. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Figure 4. Raman intensity at the selected wavebands shown as pseudo-color images. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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as it can be specifically noticed for the 1086 cm21 wavenumber

images. This could be due to the fact that this concentration

was obtained by the supplier, while the 25% concentration has

been reached by compounding the material with a twin-screw

extruder, possibly resulting in less sufficient mixing of the filler

particles in the polymer matrix.

The appearing blue specks on the right top side of samples can

be an indication of mechanical impact on the sample surface.

Figure 5. Raman intensity images with individual scales for color gradient. [Color figure can be viewed in the online issue, which is available at wiley-

onlinelibrary.com.]

Figure 6. Raman intensity images with individual scales after interpolation. [Color figure can be viewed in the online issue, which is available at wiley-

onlinelibrary.com.]
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As long as it appears approximately at the same position of

each image, it can feasibly be linked to a systematic effect. This

is the area, where the ejector pins of the injection molding tool

had touched the sample during production. The fact that

this mechanical impact can be seen on the images points out

that Raman spectroscopy has probed the surface area of the

samples.

The relative heterogeneity of filler distribution is due to the con-

stantly changing conditions and complicated flow patterns during

injection molding of polymers. It is out of the scope to carry out

detailed investigation of the evolved flow patterns. Generally, the

simulation of flow in an injection molding tool requires complex

tools. As it was mentioned in the Introduction, numerous factors

have to be taken into account during this processing technique,

which influence the flow of the polymer melt and therefore the

product quality. Besides that, fillers also have an effect on the

material flow, further complicating the calculations.

It can also be seen that for all samples concentration of the filler

is a bit larger for the pixels, which are far from the gate posi-

tion, while the concentration of PP clearly shows the opposite

trend. Even though the difference in concentration at the differ-

ent positions is not very significant, it might be an indication

of the specific flow pattern in the injection molding tool.

The general pattern of material flow into a mold shows that a

spherical volume of material in the melt front is stretched into

an ellipsoid shape as it advances.23 Thus the molecular chains

are stretched. Close to the cold wall, this orientation freezes

immediately as the hot polymer melt touches the cold surface.

At the same time in the direction towards the middle of the

wall thickness—due to the bad thermo-conductivity of poly-

mers—the molecule chains remain mobile for a longer period

of time, allowing to relaxation of the stretched molecules. Con-

sequently, the properties change in this dimension (thickness)

as well of the product, not only to the flow direction. It is,

therefore, important to know the penetration depth of the laser,

when investigating such patterns in order to make reliable con-

clusions about the spatial distribution.

Analysis of Spectral Images by MCR

Exploratory analysis of the spectral images at selected wave-

bands has shown clear patterns. However, the obtained images

with distribution patterns take into account only one peak of

the Raman spectra. A more precise overview could be obtained

about the differences of the probed areas if more information

provided by the spectra was considered. Therefore, multivariate

curve resolution of the hypercubes was carried out. Both SIM-

PLISMA and MCR-ALS methods were applied to the images. In

Figure 7. Spectra of resolved components (bottom) and concentration maps (middle and top) obtained with SIMPLISMA. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com.]
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order to provide more information to the methods the spectral

images were merged into a big image before the analysis and

the obtained concentration matrix was split up to the individual

parts right after. Both methods have been looking for two

chemical components (namely C1 and C2).

For the SIMPLISMA algorithm a second derivative was obtained

using Savitzky-Golay filter with filter width 5 5 and cubic poly-

nomial, and then used instead of original spectra for resolving.

The resolved spectra of the pure components as well as

the pseudo-color images with concentration maps are shown in

Figure 7.

At the bottom of the figure a plot with the resolved spectra

(left) and the original spectra of Chalk and PP (right) are pre-

sented. It can be clearly seen that spectrum for the first resolved

component, C1, corresponds to the spectrum of chalk, whereas

the spectrum of the second component, C2, to the spectrum of

PP. Despite small disturbances such as a negative peak for C2

around 250 cm21, the resolved spectra in general resemble the

spectra of the pure components almost ideally.

The pseudo-color images in the middle and the top part of the

figure represent concentration maps with individual scales for each

sample (similar to images shown in Figures 5 and 6 for selected

wavebands). In general, the concentration patterns look very close

to the ones obtained for individual peaks, which in this case was

expected, as the characteristic peaks of the two components do

not overlap. However, even in this case, it can be noticed that the

patterns obtained with SIMPLISMA are smoother and reveal better

the complimentary nature of C1 and C2 distributions.

For MCR-ALS, it was decided to use non-negativity constrains for

both concentration and spectral values. PCA was applied prior to

curve resolution procedure to get vectors with loadings for first

two principal components, which were utilized as initial estimates

for the resolved spectra. The MCR-ALS converged after 74 itera-

tions resulted with 99.9% of explained variance. The resolved

spectra as well as the concentration maps are shown in Figure 8

(the plots are organized the same way as for SIMPLISMA).

The resolved spectra have no negative peaks in this case due to

the used constrains. However, for example spectrum for C1,

which also corresponds to the spectrum of chalk, reveals small

peaks typical for PP and vice versa. On the other hand, the

magnitude of these peaks is very small and should not have a

significant influence. The concentration maps reveal almost

identical patterns compared to the SIMPLISMA results, how-

ever, showing small difference in concentration scale. If one

Figure 8. Spectra of resolved components (bottom) and concentration maps (middle and top) obtained with MCR-ALS. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]
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compares the difference between the pixels with largest and

smallest values for the concentration maps, both methods give

around 1.0–1.1%.

CONCLUSIONS

The results obtained using two different methods for multivari-

ate curve resolution have shown almost identical distribution

patterns as well as have given resolved spectra qualitatively very

close to the theoretical spectra of pure components—chalk and

PP in this case. From our point of view, this first of all tells

about a good stability and reliability of the selected methodol-

ogy. The use of soft-modelling approach for resolving the spec-

tra allowed to obtain results without having experimental

spectra of pure components.

The results can be further improved by adjusting an acquisition

equipment. Thus when acquiring the spectral images, it should

be taken into account that the area of the actual measurements

(laser spot size) is in reality quite small (typically 2–3 mm in

diameter or even less), therefore, each pixel represents only a

fraction of the corresponding area. These uncertainties could be

avoided by the application of a specific probe, which takes several

spectra from the adjacent points and returns an average of them.

Another important issue is a penetration depth, which depends

on several things, first of all the wavelength of the excitation

light, its power and optical system used for focusing. A full con-

trol of all four parameters is necessary for reproducibility.

In general, the obtained results allow us to conclude that the

use of Raman spectroscopic imaging coupled with proper meth-

ods for preprocessing and analysis of the obtained spectra gives

an efficient tool for non-destructive, reliable, and rapid estima-

tion of spatial distribution of fillers in injected molded shapes

and for assessing their homogeneity in the probed layer. This

technique might be particularly useful for example in the assess-

ment and comparison of different mixing techniques even if the

spectra of pure components are not available.
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